Write your message


XML Print


1- Khorramshahr University of Marine Science and Technology
Abstract:   (268 Views)
In this study, Computational Fluid Dynamics (CFD) computations are employed to predict the resistance, trim, sinkage, wave pattern, and bulbous bow performance of the naval model DTMB 5415 in shallow water. The simulations encompass resistance tests at various depths and velocities within the CFD environment. The impact of water depth reduction on frictional and pressure resistance components, as well as ship trimming and sinking, is assessed. A comprehensive analysis of changes in the wave pattern around the ship is conducted. Numerical results exhibit a substantial increase in resistance, trim, and sinkage with decreasing depth, highlighting the profound influence of shallow water conditions on the hydrodynamic behavior of the ship.
 
Full-Text [PDF 1084 kb]   (47 Downloads)    
Type of Study: Research Paper | Subject: Ship Hydrodynamic
Received: 2023/06/25 | Accepted: 2024/03/5

References
1. Hofman, Milan & Kozarski, V. (2000). Shallow water resistance charts for preliminary vessel design. International Shipbuilding Progress. 47. 61-76.
2. Liu, Jialun & Hekkenberg, Robert & Rotteveel, Erik & Hopman, Hans. (2015). Literature review on evaluation and prediction methods of inland vessel manoeuvrability. Ocean Engineering. 106. 458-471. 10.1016/j.oceaneng.2015.07.021. [DOI:10.1016/j.oceaneng.2015.07.021]
3. Jachowski, J. Assessment of ship squat in shallow water using CFD. Arch. Civ. Mech. Eng. 2008, 8, 27-36. [DOI:10.1016/S1644-9665(12)60264-7]
4. Hooft, J.P. The Influence of Nautical Requirements on the Dimensions and Layout of Entrance Channels and Harbours; Proc. International Course Modern Dredging: The Hague, The Netherlands, 1977.
5. Pacuraru, F.; Domnisoru, L. Numerical investigation of shallow water effect on a barge ship resistance. IOP Conf. Series Mater. Sci. Eng. 2017, 227, 012088. [DOI:10.1088/1757-899X/227/1/012088]
6. Ji, S.; Ouahsine, A.; Smaoui, H.; Sergent, P. 3D Numerical Modeling of Sediment Resuspension Induced by the Compounding Effects of Ship-Generated Waves and the Ship Propeller. J. Eng. Mech. 2014, 140, 04014034. [DOI:10.1061/(ASCE)EM.1943-7889.0000739]
7. Linde, F.; Ouahsine, A.; Huybrechts, N.; Sergent, P. Three-Dimensional Numerical Simulation of Ship Resistance in Restricted Waterways: Effect of Ship Sinkage and Channel Restriction. J. Waterw. Port. Coastal. Ocean. Eng. 2017, 143, 06016003. [DOI:10.1061/(ASCE)WW.1943-5460.0000353]
8. Du, P.; Ouahsine, A.; Sergent, P.; Hu, H. Resistance and wave characterizations of inland vessels in the fully-confined waterway. Ocean. Eng. 2020, 210, 107580. [DOI:10.1016/j.oceaneng.2020.107580]
9. Liu, Y.; Zou, Z.; Zou, L.; Fan, S. CFD-based numerical simulation of pure sway tests in shallow water towing tank. Ocean. Eng. 2019, 189, 106311. [DOI:10.1016/j.oceaneng.2019.106311]
10. Xu, H.; Hinostroza, M.; Wang, Z.; Soares, C.G. Experimental investigation of shallow water effect on vessel steering model using system identification method. Ocean. Eng. 2020, 199, 106940. [DOI:10.1016/j.oceaneng.2020.106940]
11. Tang, X.; Tong, S.; Huang, G.; Xu, G. Numerical investigation of the maneuverability of ships advancing in the non-uniform flow and shallow water areas. Ocean. Eng. 2020, 195, 106679. [DOI:10.1016/j.oceaneng.2019.106679]
12. Tezdogan, T., Incecik, A., Turan, O., 2016. A numerical investigation of the squat and resistance of ships advancing through a canal using CFD. J. Mar. Sci. Technol. 21, 86-101. [DOI:10.1007/s00773-015-0334-1]
13. Yao, J.-X., Zou, Z.-J., 2010. Calculation of ship squat in restricted waterways by using a 3D panel method. J. Hydrodynam. B 22, 489-494. [DOI:10.1016/S1001-6058(09)60241-9]
14. Schlichting, O. Schiffwiderstand auf beschränkter wassertiefe: Widerstand von seeschiffen auf flachem wasser. Jahrbuch der Schiffbautechnischen Gesellschaft; Springer: Hanburg, Germany, 1934; Volume 35, p. 127.
15. ITTC. Speed and Power Trials, Part 2, Analysis of Speed/Power Trial Data. In Proceedings of the 25th ITTC, Copenhagen, Denmark; 2014. Available online: https://ittc.info/media/4210/75-04-01-012.pdf
16. Lackenby, H. The Effect of Shallow Water on Ship Speed. Nav. Eng. J. 1964, 76, 21-26. [DOI:10.1111/j.1559-3584.1964.tb04413.x]
17. Bechthold, J., Kastens, M., 2020. Robustness And Quality of Squat Predictions in Extreme Shallow Water Conditions Based On RANS-Calculations. Ocean Eng. 197, 106780 Https://Doi.Org/10.1016/J.Oceaneng.2019.106780. [DOI:10.1016/j.oceaneng.2019.106780]
18. Song, Soonseok & Terziev, Momchil & Tezdogan, Tahsin & Demirel, Yigit & De Marco Muscat-Fenech, Claire & Incecik, Atilla. (2023). Investigating Roughness Effects on Ship Resistance in Shallow Waters. Ocean Engineering. 270. 113643. 10.1016/J.Oceaneng.2023.113643. [DOI:10.1016/j.oceaneng.2023.113643]
19. Campbell, R., Terziev, M., Tezdogan, T., Incecik, A., 2022. Computational Fluid Dynamics Predictions of Draught and Trim Variations on Ship Resistance in Confined Waters. Appl. Ocean Res. 126, 103301 Https://Doi.Org/10.1016/J.Apor.2022.103301. [DOI:10.1016/j.apor.2022.103301]
20. Zeng, Q., Hekkenberg, R., Thill, C., 2019a. On The Viscous Resistance of Ships Sailing in Shallow Water. Ocean Eng. 190, 106434 Https://Doi.Org/10.1016/J. Oceaneng.2019.106434. [DOI:10.1016/j.oceaneng.2019.106434]
21. Du, P., Ouahsine, A., Sergent, P., Hu, H., 2020. Resistance And Wave Characterizations of Inland Vessels in The Fully-Confined Waterway. Ocean Eng. 210 Https://Doi.Org/ 10.1016/J.Oceaneng.2020.107580. [DOI:10.1016/j.oceaneng.2020.107580]
22. Terziev, M., Tezdogan, T., Incecik, A., 2021b. A Numerical Assessment of The Scale Effects of a Ship Advancing Through Restricted Waters. Ocean Eng. 229, 108972 Https://Doi. Org/10.1016/J.Oceaneng.2021.108972. [DOI:10.1016/j.oceaneng.2021.108972]
23. CD-adapco (2016). STAR-CCM+ 11.0 User Guide.
24. https://simman2014.dk/
25. Barrass, B. & Derrett, D.R.. (2006). Ship Stability for Masters and Mates. 10.1016/C2010-0-68323-4. [DOI:10.1016/B978-075066784-5/50050-2]
26. Eryuzlu, N.E. and Hausser, R. (1978). Experimental investigation into some aspects of large vessel navigation in restricted waterways. Proceedings Symposium on Aspects of Navigability, Delft, Netherlands, vol. 2, pp. 1-15
27. ICORELS (International Commission for the Reception of Large Ships), Report of Working Group IV, PIANC Bulletin No. 35, Supplement, 1980.
28. Millward, A. (1996). A Review of the Prediction of Squat in Shallow Water. Journal of Navigation, 49(1), 77-88. doi:10.1017/S0373463300013126 [DOI:10.1017/S0373463300013126]
29. Ferziger, Joel & Perić, Milovan & Street, Robert. (2020). Computational Methods for Fluid Dynamics. 10.1007/978-3-319-99693-6. [DOI:10.1007/978-3-319-99693-6]
30. Menter, Florian & Kuntz, M. & Langtry, RB. (2003). Ten years of industrial experience with the SST turbulence model. Heat and Mass Transfer. 4.
31. ITTC Recommended Procedures and Guidelines, 2014. Practical guidelines for ship CFD applications. 7.5-03 -02-03.
32. ITTC Recommended Procedures and Guidelines, 2017. Uncertainty analysis in CFD verification and validation methodology and procedures. 7.5-03-01-01.
33. Hasanvand, Ali & Hajivand, Ahmad & ali, Nasim. (2019). Investigating the effect of rudder profile on 6DOF ship turning performance. Applied Ocean Research. 92. 101918. 10.1016/j.apor.2019.101918. [DOI:10.1016/j.apor.2019.101918]
34. Yun, Kunhang & Park, Byoungjae & Yeo, Dong-Jin. (2014). Experimental Study of Ship Squat for KCS in Shallow Water. Journal of the Society of Naval Architects of Korea. 51. 10.3744/SNAK.2014.51.1.34. https://doi.org/10.3744/SNAK.2014.51.1.34 [DOI:10.3744/SNAK.2014.51.6.539]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.